
Leveraging Model Transformations by means of

Annotation Models

Juan M. Vara, Verónica A. Bollati, Belén Vela, Esperanza Marcos

Research Group Kybele

Rey Juan Carlos University

Madrid (Spain)

{juanmanuel.vara, veronica.bollati, belen.vela, esperanza.marcos}@urjc.es

Abstract. Model transformations are the key to automate any software

development proposal based on model-driven engineering. However, it might

happen that a unique transformation does not suit for every possible scenario.

This could be the case when the gap between source and target metamodels is

too large or the target metamodel is too complex. In such situations, it may

happen that the transformation never generates some constructions, unless its

execution is driven to do so. In other words, to obtain the most accurate models

we need to introduce some design decisions that guide the transformation. A

way to do so is to model our design decisions as annotations over the source

model – in a model-driven engineering context, everything should be a model.

Then, we can use such annotation model as an additional input for the model

transformation. This work shows how we have applied that technique to

improve our proposal for model-driven development of XML Schemas. The

solution is based on the use of weaving models as annotation models.

Key words: Model-Driven Software Development, XML Schema, Annotation

Models, Weaving Models.

1 Introduction

Since the World Wide Web Consortium (W3C) proposed the eXtensible Markup

Language (XML), it has become the current de facto standard for information

interchange between different organizations.

Initially, the way to define the structure of XML document was by declaring a

Document Type Definition (DTD). DTDs were very efficient at the beginning.

However, as the use of XML documents increased, the weaknesses of DTDs arose.

They present syntactic and semantic failings, especially when the structure of the

conforming XML documents is complex. For instance, they are not well-formed

XML documents, thus developers have to learn how to use two different syntax.

Besides, their mechanisms for defining arity are rather poor. To overcome these

drawbacks, the W3C proposed a new standard for defining the structure of XML

documents: the XML Schema Language [23]. It is an alternative to the use of DTDs

based on XML that provides a series of advantages with respect to DTDs.

The main improvement of XML Schemas regarding DTDs was providing with a

vastly improved data typing system. XML Schemas also support namespaces, which

allow different parts of a particular XML document to conform to different XML

Schemas [2]. All this given, the XML Schema has been commonly adopted as the de-

facto standard for XML document modeling.

In the line of the new trend in software development, in [4] we applied the

principles of the Model-Driven Engineering (MDE) approach [20] to the development

of XML Schemas. MDE proposes the use of models in each step of the development

process. Such models represent the Information System (IS) at different abstraction

levels. Besides, the transformation rules between these models have to be defined.

Our proposal starts from a Platform Independent Model (PIM) represented by a

UML class diagram. Next, a model to model transformation (M2M) generates a

Platform Specific Model (PSM) that represents the XML schema model. Finally, a

model to text transformation (M2T) generates the XML document that implements

the XML Schema model.

However, when we addressed the task of developing the tooling support for the

proposal we faced a common problem on MDE: we need some design decisions to

drive the PIM to PSM mapping. Nevertheless, according to the principles of MDE, a

development process must provide for the highest degree of automation. In fact, once

the PIM has been defined, the rest of the process should be completely automatic. The

simplest solution in this case is to use a default value for these design decisions when

coding the model transformation.

But defining a one-size-fits-all model transformation in such contexts is not

enough. It may occur that some constructions are never generated on the target model.

This approach could be improved by using a parameterizable transformation. Non-

uniform mappings [10] and generic transformations [21] were the first works in this

direction. Note that all the artefacts handled on a MDE process should be models. So,

the parameters we need to drive the execution of the transformation have to take the

shape of a model.

In this work we use a weaving model [1] as a container for those parameters or

design decisions. Before executing the model transformation, we define a weaving

model that annotates the source model. Then, both the source and the weaving model

are the inputs to generate the target model. This way, different target models can be

obtained from a particular source model, depending on which weaving/annotation

model is used.

The results lend strong support to the idea that current MDE tools, like model

transformations and weaving models are powerful enough to fulfill the requirements

of XML Schema development.

The rest of this paper is organized as follows. Section 2 briefly introduces two

MDE concepts: weaving models and annotation models. Section 3 presents the

proposal. To that end it describes the model-driven development process for XML

Schemas, the involved metamodels and the design decisions allowed when moving

from the PIM to the PSM. Section 4 focuses on the implementation of the proposal by

means of a case study. Section 5 summarizes related works. Finally, section 6 sums

up the main conclusions as well as the future work.

2 Preliminaries

Before focusing on the development of the model transformation addressed in this

work, we introduce some previous concepts on which our work has been based:

Weaving Models and Annotation Models.

2.1 Weaving Models

Model transformation is essentially intended to define executable operations. Hence it

is not always adapted to define and to capture various kinds of relationships between

models elements. However, we often need to establish and handle these

correspondences between the elements of different domains, each one defined by

means of a model. The correspondences may be informal, incomplete, and

preliminary. In many cases they may not be used directly to drive an executable

operation. Model weaving is the process of representing, computing, and using these

initial correspondences. This way, a set of correspondences between different model

elements is represented as a weaving model [1].

A Weaving Model is thus a special kind of model used to establish and handle the

links between models elements. This model stores the links (i.e., the relationships)

between the elements of the (from now on) woven models. We illustrate this idea in

Fig. 1: Mw is a weaving model that captures the relationships between Ma and Mb

(the woven models), denoted by the triple [Mw, Ma, Mb]. Then, each element of Mw

links a set of elements of Ma with a set of elements of Mb. For instance, the r2

element of Mw defines a relationship between a2 and a3 from Ma, and b1 from Mb.

a1

a3
a2

Ma

a1

a3
a2

Ma

b1

b2

Mb

b1

b2

Mb

a1

a3

a2

b1

r1

r2 b2

Weaving Model
Mw

a1

a3

a2

b1

r1

r2 b2

Weaving Model
Mw

Fig. 1. Model Weaving overview

To create and handle the weaving models used in this work we used the ATLAS

Model Weaver (AMW). The model weaver workbench provides a set of standard

facilities for management of weaving models and metamodels [9]. Moreover, it

supports an extension mechanism based on a Core Weaving Metamodel [8]. The Core

Weaving metamodel contains a set of abstract classes to represent information about

links between model elements. These classes are extended to specify new domain-

specific weaving metamodels.

2.2 Annotation Models

MDA must support incremental and iterative development. This means that mappings

between models must be repeatable. So, if a mapping requires input in addition to the

source models, this information must be persistent. However, it must not be integrated

into the source model, because it would mean polluting the source with information

from outer domains, which is not desirable. These additional mapping inputs take the

form of annotations [15].

Models are annotated or decorated to insert information that is not defined in the

source metamodel. Annotation data usually is not conceptually relevant to be part of

the metamodel. For example, annotations are often meta-information used for pre-

processing, testing, logging, versioning, or parameterization [8].

The idea behind the use of model annotations for model transformation is the

following: a model transformation specifies a set of rules that encodes the

relationships between the elements from the input and output metamodels. Thus, it is

defined at metamodel level, i.e., it maps elements from the input and output

metamodels. It can be used to generate an output model from any model conforming

to the input metamodel. That is to say that the model transformation program works

for any model defined according to the input metamodel. However, in some situations

this approach could be too generic and some additional considerations have to be

made each time the transformation is executed. These considerations can take the

form of annotations and we can collect them in an annotation model.

For instance, given a PIM and a PSM metamodel, a model transformation between

them, and one terminal model conforming to the PIM metamodel, different PSM will

be generated for each annotation model used to execute the transformation. This is the

approach we follow in this work. Its application is showed in the following sections.

3 Automatic XML Schema Development in MIDAS framework

This work is framed in MIDAS [13], a model-driven methodology for IS

development. Specifically, our proposal focuses on the content aspect of MIDAS that

corresponds with the traditional concept of Database (DB). Fig. 2(a) summarizes the

development process. At PIM level we use a conceptual data model represented by an

UML class diagram. At PSM level, we use two different models depending on the

technology selected to implement the DB: the Object Relational (OR) model and the

XML model. In [4] and [5] we introduced the proposed MDE development process

for XML and OR technology, respectively.

In order to support the MIDAS framework we are building a MDE environment

for IS development called M2DAT (MIDAS MDA Tool). The work in this paper is

integrated in the M2DAT-DB (MIDAS MDA Tool – Database) module, which

provides the tooling for the content aspect of MIDAS.

All the technical solutions used to develop M2DAT share a common basis: they

are part of the Eclipse Modelling Project (EMP, http://www.eclipse.org/modeling/).

The EMP facilitates the deployment of any model-driven engineering process by

providing a unified set of modeling frameworks, tooling, and standards

implementations. All of theses facilities are built upon a common modelling

framework: the Eclipse Modelling Framework (EMF) [16]. Using EMF we have

developed the model editors for each metamodel considered in MIDAS.

For depicting the class diagrams used as conceptual data model at PIM level we

use UML2, the implementation of the UML 2.0 standard of EMF. To develop the

PIM to PSM model transformation we use the ATLAS Transformation Language

(ATL) [11]. Currently, ATL is considered the de-facto standard for M2M

transformations. It offers an Integrated Development Environment (IDE) completely

integrated in Eclipse. Besides, it is framed in the AMMA (ATLAS Model

Management Architecture) platform that includes other facilities in the MDE context,

such as the KM3 metamodeling language or the ATLAS Model Weaver (AMW) tool.

We have evaluated several proposals for code generation, such as MOFScript, JET

and XPand. Finally we are using the MOFScript [17] language. It is a prototype

implementation based on concepts submitted to the OMG MOF M2T transformations

RFP process [18]. Since it was the first submission to the OMG RFP, it is probably

the most contrasted and the most commonly used, despite the fact that recently XPand

and other template-based approaches are gaining ground. Besides, the training period

of MOFScript is quite short. After coding some M2M transformations, moving to

M2T transformations is quite easy.

As shown in Fig. 2(a), this work focuses on the transition from the conceptual data

model to the XML model. The first step towards the completion of this transition was

to define the mapping rules from PIM to PSM using graph grammars. Afterwards, we

coded these rules using ATL and finally, we coded the M2T transformation that

returns the XML Schema. For more details see [4].

However, by the time we were coding the ATL module, we realized that some

information needed to generate the target model was not included in the source

model. For each execution of the transformation some extra information was needed.

In some sense, this extra information can be shown as a way of parameterize the

transformation. In a first iteration we opted for using a set of default values for these

extra data. Nevertheless, it turned out that working this way, the transformation was

not able to produce some constructs on the target model, whichever the source model

used was. For instance, all the attributes of a particular XML element had to be

grouped using the same compositor, whether it was sequence, choice or all. We will

show a detailed example in the following sections.

The first option to overcome this drawback was to extend the source metamodel to

support the modeling of this extra information. However, it is not fair to pollute the

metamodel with concepts not relevant for the domain that it represents. Back to the

mentioned example, the decision on how a set of PIM attributes should be mapped to

an XML Schema model is a platform specific matter. It should not be considered

when defining the PIM and it should not have any influence on the way we define the

PIM.

Therefore, we needed a different way to collect this extra information that was

related to the source model but not included in it. Since this information or

parameters had to be available for the ATL program and considering that we were in

a MDE context, the best option was to use another model (and thus to define a new

metamodel): an annotation model.

P
I
M

P
S

M

Conceptual
Data Model

OR
Model

XML
Model

W
O

R
K

I
N

G

C
O

D
E

CREATE OR REPLACE TYPE

Jefe_Proyecto AS

(Codigo_Id

NUMBER,

Nombre

VARCHAR2(30),

Telefono

NUMBER,

Dirige

REF Proyecto);

SQL

CONTENT

ATL

XML

Schema

MOFScriptMOFScript

UML2

Metamodel

XML Schema

Metamodel

AMW Core Weaving

Metamodel

Conceptual

Model

XML Schema

Model

Annotation Metamodel

Annotation Model

for XML Schema

SOURCE TARGET

SOURCE

UML2XMLSchema.atl

Extends

c2 c2c2

Fig. 2. a) Content MIDAS Dimension and b) Using weaving models for XML Schema

Finally, instead of defining a completely new metamodel to create our annotation

models, we use a weaving model to annotate the input model. To that end, we opted

for using the annotation metamodel defined as an extension to the core weaving

metamodel in [8].

All this given, the resulting PIM to PSM mapping is summarized in Fig. 2(b). For

every execution of the ATL transformation - in other words, for each source model

(Conceptual Data Model) - we define a weaving model (Annotation Model) that

contains a set of annotations. They represent the extra information needed to execute

the transformation (we may refer to them as the parameters of the transformation).

Thus, the target model is generated from the source model and the weaving model.

This process allows obtaining different XML Schema models from a particular

conceptual data model just by modifying the weaving model.

3.1 Metamodels

As Fig 2(b) shows, we use three different metamodels to map a conceptual data model

to an XML Schema one: the UML2 metamodel, the XML schema metamodel and the

Annotation metamodel. Since the UML2 metamodel is well known, in the following

we briefly introduce the other two.

It is worth mentioning that our first step towards a model-driven approach for

XML Schemas development was the definition of a UML profile for XML Schema

modeling [22]. However, when we addressed the task of implementing the PIM to

PSM model transformation, we decided to shift from UML profiles to Domain

Specific Languages (DSL) [14]. This decision was mainly based on technical matters.

As a matter of fact, technology is playing a key role in the distinction between UML

based and non-UML based tools. The facilities provided in the context of the EMP

and other DSL frameworks, like the Generic Modelling Environment (GME) or the

DSL Tools, have shifted the focus from UML profiles to MOF-based DSLs.

Therefore, regarding existing technology for (meta-) modeling and model

transformations, it seemed more convenient to express the new concepts related with

XML schema modeling using a new DSL. To that end we have developed a MOF-

based metamodel for XML Schema modeling.

XML Schema Metamodel. Supporting all the constructions defined by the standard

resulted in a very complex metamodel. For the sake of space, Fig. 3 shows only some

parts of it. But the way they are connected helps to understand the complete

metamodel that you can find at http://www.kybele.etsii.urjc.es/MtATL/.

Fig. 3. Partial view of the XML Schema Metamodel

As Fig. 3 shows, we included a pair of modifications regarding the standard. On the

one hand, we have added some hierarchies. On the other hand, some classes include

an election property. The type of this property will be the root class of one of the

added hierarchies. This way, when we set the value of the election property, we are

identifying which, among the different child classes, will be the instantiated class.

These modifications help on easing the management of the metamodel.

Let’s show an example to better understand how these modifications work: the

election property of the ElementGlobal says that its type will be an

AbstractTypeLocal type. That is, it will be a ComplexTypeLocal XML element or a

SimpleTypeLocal XML element. At the same time, the ComplexTypeLocal class owns

an election property of AbstractContent type. This one has three children:

SimpleContent, ComplexContent and Other. If we choose the latter, we can decide

whether we will use a GroupRef, Sequence, Choice or All compositor. All together,

the result is that the elements of a XML element whose type is ComplexTypeLocal,

could be grouped using a Sequence, a Choice or an All compositor.

Finally, using different colours simplifies the task of identifying which hierarchy

is used for defining the type of the election property in each specific case.

http://www.kybele.etsii.urjc.es/MtATL/

Annotation Metamodel. An annotation model includes a single-valued reference to

the AnnotatedModel plus a set of annotation objects. Each annotation contains a

single-valued reference to the model element plus a list of properties. The properties

have an identification key and the corresponding value. The AnnotatedModelElement

class acts as the proxy for the linked/annotated elements. That is, each record is

merely a set of key-value pairs. The bottom of Fig. 4 shows the annotation metamodel

used along with the core weaving metamodel [8] (top).

WModel

WModelRef

WLink

WLinkEnd

-name : String

-description : String

WElement

-ownedElement 1

-model

1..*

ref : String

WRef

WElementRef

modelRef

 *

child

parent

end

1-* link

element

AnnotationModelAnnotatedModel contents

*

AnnotationreferencedModel

1

AnnotatedModelElementannotatedModelElement

0..1

1

1 1

Key

Value

Property

*

properties 1

Core Weaving Metamodel
ownedElementRef

1 - *

wovenModel

Fig. 4. Annotation Metamodel

3.2 PIM to PSM Transformation: design decisions

In the following we summarize the design decisions that can be taken to map a

conceptual data model (PIM) to a XML Schema model (PSM). As we have already

mentioned, in [4] we presented an initial implementation of such transformation. Here

we modify some of the rules comprised in that initial version to allow the introduction

of design decisions. Next, we focus only on those mapping rules. They are mainly

related with the mapping of the properties of a class and the properties of a

composition relationship.

 Class Properties: the mapping rule said that every class will be mapped to an

ElementGlobal, which represents an element of the XML schema, plus a

ComplexTypeLocal to define its type. The properties of that class are mapped to a

sub-element (ElementLocal) of the ComplexTypeLocal. The designer can set the

compositor used to group those ElementLocals: all, choice or sequence (Fig. 3).

The semantics associated with each type of compositor is the following:

o all: specifies that the child elements can appear in any order. Each child

element can occur 0 or 1 time.

o choice: allows only one of the elements contained in the declaration to

be present within the containing element.

o sequence: specifies that the child elements must appear in a sequence.

Each child element can occur from 0 to any number of times

Default behavior: the default compositor is sequence. The designer may modify

this behavior by adding an annotation to the UML class. That is, by adding an

annotation object in the weaving/annotation model. Such annotation will contain a

property object in the form {key = Attribute, value = Choice} or {key = Attribute,

value = All}.

 Properties of a composition relationship: composition relationships are mapped

by including a sub-element within the ComplexTypeLocal element that maps the

“WHOLE” class of the composition. This sub-element will be also a

complexTypeLocal. It will include a set of XML sub-elements. They will map the

“PART” class of the composition. The designer may choose the compositor used to

group those sub-elements: all or sequence.

Default behavior: by default, the sequence compositor will be used. The designer

may modify this behavior by adding an annotation to the UML association. That is,

by adding an annotation object in the weaving/annotation model. Such annotation

will contain a property object in the form {key = Association, value = All).

4 Case Study

In this section we use part of a case study to show the use of annotation models for

model-driven development of XML Schemas. The case study is an XML DB model

to store information about bibliographical references. We will start by defining the

UML class diagram (section 4.1) and we will show how the annotation model (section

4.2) drives the execution of the transformation to generate the desired XML schema

model.

Note that, once the conceptual data model is defined, the rest of the process is

automatic. In fact, the weaving model is optional. The ATL rules have been codified

to show a default behaviour if there is no annotation.

4.1 Conceptual Data Model

As shown in Fig 5, there are different types of bibliographical references: articles,

books, chapters, translations and thesis.

Each reference has a title, a reference type, a publication date and it may has been

written by more than one author and published by several publishers. In turn, a

publisher may publish several references and an author may appear in more than one

reference. Both, authors and publishers have a first name and a surname. The books

are composed of several chapters. Each chapter belongs to one book and it may have

been translated several times. Finally, each publication is composed of several

articles.

The figure is a screenshot of the conceptual model represented by a class diagram

using the Eclipse UML2 class diagrammer.

Fig. 5. Conceptual Data Model for the case study.

4.2 Annotation Model

Fig. 6 shows the weaving model used to annotate the previous class diagram. We

added an annotation to the Publisher class. Such annotation contains a property (key

= Attribute, value = Choice) that indicates that a choice element has to be used to map

the properties of the UML class. Working this way, the designer may add an

annotation to each class of the source model. The annotation sets the compositor

(sequence, choice or all) used to map the properties of the class. If there is no

annotation the default compositor is used (sequence).

Fig. 6. Partial view of the weaving/annotation model for the case study.

4.3 Using annotations to parameterize the transformation

In this section, we show the ATL code for processing the annotations. To that end, we

focus on the mapping of the Publisher class and its properties. This processing is

encoded in a set of rules for each type of compositor: sequence, choice and all, plus a

set of auxiliary functions (helpers).

Fig. 7 shows the corresponding matching rules. For space reasons, here we show

only those for using a sequence or a choice object, though the matching rule for using

an all object is similar.

The guard of each rule checks which the decision of the designer was by calling

the mapTo() helper.

rule Class2ElementGlobalSeq{

from

c : UML!Class ((c.mapTo() = 'Sequences')and c.GetGeneralization().oclIsUndefined())

to

xml : schemaXML!ElementGlobal

(id <- c.name,

name <- c.name + '<<ElementGlobal>>',

Owner <- thisModule.package,

eleccion <- cmpTyp),

cmpTyp : schemaXML!ComplexTypeLocal

(id <- c.name + '_Type',

eleccion <- Other),

Other: schemaXML!Other(

eleccion <- Seq),

Seq: schemaXML!Sequences()

}

rule Class2ElementGlobalChoice{

from

c : UML!Class ((c.mapTo() = 'Choice')and c.GetGeneralization().oclIsUndefined())

to

xml : schemaXML!ElementGlobal

(id <- c.name,

name <- c.name + '<<ElementGlobal>>',

Owner <- thisModule.package,

eleccion <- cmpTyp),

cmpTyp : schemaXML!ComplexTypeLocal

(id <- c.name + '_Type',

 eleccion <- Other),

Other: schemaXML!Other(

eleccion <- Seq),

Seq: schemaXML!Choice ()

}

Fig. 7. Partial view of matching rules for mapping UML classes

As shown at the bottom of Fig. 8, the mapTo() helper returns the value of the

designer decision by calling the getLink() and getAnnotationValue() helpers.

 helper context UML!Class def: mapTo() : String =
if self.getLink().oclIsUndefined() then

'Sequences'

else

if self.getLink().getAnnotationValue('Attribute') = 'Sequences'

then

'Sequences'

else

if self.getLink().getAnnotationValue('Attribute') = 'Choice'

then

'Choice'

else

'All'

endif

endif

endif;

Fig. 8. Helper mapTo()

The getLink() helper (Fig. 9) navigates the annotation model to return the annotation

object referencing the particular property. In our case study, the annotation references

the Publisher class. By calling the getAnnotationValue() helper (Fig. 10) over the

annotation object, the value of its Attribute property is returned. In this case, its value

is Choice. So, the ElementLocal objects that will map the properties of the Publisher

class will be grouped using a choice compositor.

helper context UML!NamedElement def: getLink() : AMW!WLink =

AMW!WLinkEnd.allInstances()->asSequence()->select(aux | aux.element.ref = self.__xmiID__)

->first().refImmediateComposite();

Fig. 9. Helper getLink()

 helper context AMW!WLink def: getAnnotationValue(key: String) : String =

self.properties->asSequence()->select(prop | prop.key = key)->first().value;

Fig. 10. Helper getAnnotationValue()

Finally, Fig.11(a) shows the result of executing the parameterized transformation. The

source models were the conceptual data model shown in Fig. 5 and the annotation

model of Fig. 6.

Fig. 11. Partial view of the XML schema model obtained: (a) using the annotation model.

(b) default behavior

The code for mapping the properties of a composition relationship is very similar. As

well, we encoded a set of helpers and matching rules for each type of compositor:

sequence and all.

Fig. 12 shows the matching rule. Again, for space reasons we show just the one

for using a sequence object.

rule Composite2ElementLocalSeq{

from

Ass: UML!Association (Ass.isAssoComposite() and not Ass.isAssoAgregation() and

Ass.AssMapTo() = 'Sequences')

to

Elem: schemaXML!ElementLocal(

name <- Ass.name.debug('composite') + '<_is_composed_of>',

owner <- thisModule.resolveTemp (Ass.getPropertyAssoNoMulti().type, 'Seq'),

eleccion <- cmpTyp),

cmpTyp : schemaXML!ComplexTypeLocal

(eleccion <- Other),

Other: schemaXML!Other(

eleccion <- Seq),

Seq: schemaXML!Sequences(),

Elemt: schemaXML!ElementLocal(

name <- Ass.getPropertyAssoLast().name,

owner<- Seq,

ref <- Ass.getPropertyAssoLast().name)

}

Fig. 12. Partial view of matching rule for mapping UML composition relationships using a

sequence object.

5 Related works

Regarding previous works on this topic, there are two main lines to consider. On the

one hand, at the end of 2000, several works focused on the use of UML to model

XML Schemas. More specifically, they used UML class diagrams. Besides, they

proposed to generate the XML Schema directly from the UML model [6, 7]. Working

this way, the semantic gap between the abstraction levels considered is just too big.

Moving from the conceptual data model to the source code is not recommendable.

You will find that there are a lot of constructions that could not be obtained in the

resulting code. For instance, all classes will be mapped using the same compositor. In

real situations, where very complex models are used, this drawback is even more

harmful. The generated XML Schema will not satisfy the needs of the designer. A

language closer to the deployment platform is needed, i.e. something akin to a DSL

for XML schema modelling.

A variation to this approach can be found at [19], where the mapping rules to

obtain a UML model from an XML schema are defined. This proposal shows the

same problem and it also lacks of any technical support.

Finally, there exists some more recent proposal focused on UML for XML

Schema modelling. In [12] a comparison between them can be found. As a

conclusion, we can say that none of them offer technical support.

Our proposal comprises a DSL for XML schema modelling, the mapping rules for

moving from a conceptual data model to a XML Schema model, the code generation

facilities to obtain the source code of the modelled Schema and the tooling to

integrate these artefacts. In addition, the process can be customized by introducing

some design decisions on the mapping. Moreover, in front of previous works, the one

presented here is framed in a MDA framework. This fact results in additional

advantages. For instance, right now we are developing the support to move from the

XML technical space to the OR technical space.

6 Conclusion

In [4] we completed and automated our proposal for XML schema model-driven

development. To that end, we defined a new metamodel for XML Schemas

modelling, and we coded the M2M and M2T transformations needed.

This work has focused on the improvement one of those tasks: the transformation

from conceptual data model (PIM) to XML Schema model (PSM). When validating

the initial M2M implementation, we realised that we need to include certain design

decisions in order to consider all the possible options when generating the XML

Schema model. This article shows how we solved this problem using weaving models

as annotation models. By using annotation models we can parameterize a M2M

transformation without losing its generic nature. Furthermore, we are able to persist

the design decisions that guided the development process through the use of models

as the container for those design decisions.

The paper shows that the solution may be considered as quite simple. This is

mainly due to the simplicity, the genericity and power of the AMW tool and its good

coupling with the ATL model transformation solution.

The approach contributes to improve the accuracy and the quality of the models

used at different stages of development as well as the subsequent code generated from

them. These activities are especially important in proposals aligned with MDE

because it proposes the models to be used as a mechanism to carry out the whole

software development process.

At the present time we are working in two main directions. On the one hand, we

are working to control entries that are mutually contradictory or inconsistent by

adding OCL constraints at the metamodel.

On the other hand, we are working to support reverse engineering from the XML

documents. We are defining the syntax of our XML Schema metamodel with TCS

(Textual Concrete Syntax). Thus, one could not only extract an XML Schema from a

model, but also inject an XML Schema to an XML Schema model.

Finally, we are working to apply the technique used here in the rest of the M2M

transformations of M2DAT.

Acknowledgments This research has been carried out in the framework of the

projects: MODEL-CAOS (TIN2008-03582/TIN), AGREEMENT-TECHNOLOGY

(CSD2007-0022) both project financed by the Spanish Ministry of Education and

Science and the IDONEO project (PAC08-0160-6141) financed by “Consejería de

Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha”.

References

1. Bernstein, P A., Applying Model Management to Classical Meta Data Problems. In

proceedings of First Biennial Conference on Innovative Data Systems Research, Asilomar,

CA, USA. 2003.

2. Bex, G. J., Neven, F., Van den Bussche, J., DTDs versus XML Schema: A Practical Study.

In proccedings of Seventh International Workshop on the Web and Databases (WebDB

2004). Sihem Amer-Yahia and Luis Gravano (Eds.): pp. 79-84, Paris, France. 2004.

3. Bézivin, J., Some Lessons Learnt in the Building of a Model Engineering Platform. In

proceedings of 4th Workshop in Software Model Engineering (WISME), Montego Bay,

Jamaica, 2005.

4. Bollati, V.A, Vara, J.M., Vela, B., Marcos, E., Una Aproximación Dirigida por Modelos

para el Desarrollo de Esquemas XML. In proceedings of XIII Jornadas de Ingeniería del

Software y Bases de Datos (JISBD 2008). A. Moreira, M.J. Suarez-Cabal, C. de la Riva, J.

Tuya (Eds.), ISBN: 978-84-612-5820-08. Gijón, Spain. 2008.

5. Bollati, V.A., Vara, J.M., Vela, B., Marcos, E., Una Aproximación Dirigida por Modelos

para el Desarrollo de Bases de Datos Objeto-Relacionales. In proceedings of XIV

Congreso Argentino de Ciencias de la Computación (CACIC 2008). Chilecito, Argentina,

2008.

6. Carlson, D. Modeling XML Applications with UML: Practical e-Business Applications,

Addison Wesley, Reading, ISBN 0201709155. Massachusetts, USA. April 2001.

7. Conrad, R., Scheffner, D., Freytag, J.C. XML Conceptual Modeling Using UML. In

proceedings of International Conceptual Modelling Conference, pp. 558-571, Springer.

ISBN: 978-3-540-41072-0. Salt Lake City, USA. 2000

8. Didonet Del Fabro, M., Metadata management using model weaving and model

transformation. Ph.D. Thesis Nantes University, 2007.

9. Didonet Del Fabro, M., Bézivin, J., Valduriez P., Weaving Models with the Eclipse AMW

plugin. Eclipse Modeling Symposium, Eclipse Summit Europe, Esslingen, Germany.

2006.

10. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A., Transformation: The Missing

Link of MDA. In proceedings of International Conference on Graph Transformation pp:

90-105, Spinger. ISBN: 3-540-44310-X. Barcelona, Spain. 2002.

11. Jouault, F., Kurtev, I., Transforming Models with ATL. In proceedings of Model

Transformations in Practice Workshop. (MoDELS2005) pp: 128-138. Lecture Notes in

Computer Science, Vol. 3713, Briand, Lionel; Williams, Clay (Eds.), Springer. ISBN: 3-

540-29010-9, Jamaica. 2005.

12. Bernauer, M., Kappel,G., Kramler, G. Representing XML Schema in UML - A Comparison

of Approaches. In proceedings of 4th International Conference on Web Engineering

(ICWE2004), p. 440 – 444. LNCS 3140, Springer, ISBN: 978-3-540-22511-9. Munich,

Germany. 2004

13. Marcos, E. Vela, B., Cáceres, P., Cavero, J.M., MIDAS/DB: a Methodological Framework

for Web Database Design. In proceedings of Conceptual Modeling for New Information

Systems Technologies, DASWIS conference, pp. 227-238. LNCS 2465, Springer-Verlag,

ISBN: 978-3-540-44122-9. Yokohama, Japan. November, 2001

14. Marjan, M., Jan, H., Anthony, M.S., When and how to develop domain-specific languages.

ACM Comput. Survevs. Vol. 37, Issue 4. pp. 316-344, ISSN: 0360-0300. 2005.

15. Mellor, S., Scott, K., Uhl, A., Weise, D.: Model-Driven Architecture. In proceedings of

Advances in Object-Oriented Information Systems. pp. 233-239 (2002).

16. Moore, B. Dean, D. Gerber, A. Wagenknecht, G., Vanderheyden, P. Eclipse Development

using the Graphical Editing Framework and the Eclipse Modeling Framework. Retrieved

from: http://ibm.com/redbooks. February 2004.

17. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., Berre, A.-J., Toward Standardised Model

to Text Transformations. Model-driven Architecture – Foundations and Applications, pp.

239-253, LNCS. Springer Berlin / Heidelberg, ISBN: 978-3-540-30026-7. 2005.

18. Object Management Group (OMG). (2004c). MOF Model to Text Transformation

Language RFP. Retrieved from http://www.omg.org/cgi-bin/doc?ad/04-04-07.

19. Salim, F.D.; Price, R.; Krishnaswamy, S.; Indrawan, M. UML documentation support for

XML schema. In proceedings of Australian Software Engineering Conference, pp: 211-

220. 2004.

20. Selic, B., The pragmatics of Model-Driven development. IEEE Software, Vol. 20, 5,

September.-October. 2003.

21. Varró, D. y Pataricza, A., Generic and Meta-Transformations for Model Transformation

Engineering. UML 2004. In proceedings of 7th International Conference, pp: 290-304.

LCNS, Vol. 3273, Springer, ISBN: 978-3-540-23307-7. 2004.

22. Vela, B., Acuña, C., Marcos, E., A Model Driven Approach for XML Database

Development. In proceedings of 23rd. International Conference on Conceptual Modelling

(ER2004), pp. 780-794 LNCS 3288. Springer Verlag, ISBN: 978-3-540-23723-5.

Shanghai, China. November, 2004.

23. W3C, XML Schema Working Group. XML Schema Parts 0-2Primer, Structures,

Datatypes]. W3C Recommendation. Retrieved from: http://www.w3.org/TR/2004/REC-

xmlschema-0-20041028/, http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ y

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/, 2004.

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

	Introduction
	Preliminaries
	Weaving Models
	Annotation Models

	Automatic XML Schema Development in MIDAS framework
	Metamodels
	PIM to PSM Transformation: design decisions

	Case Study
	Conceptual Data Model
	Annotation Model
	Using annotations to parameterize the transformation

	Related works
	Conclusion

